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Abstract

In proposals for quantum computers using arrays of trapped ultracold polar molecules as qubits, a strong
external field with appreciable gradient is imposed in order to prevent quenching of the dipole moments
by rotation and to distinguish among the qubit sites. That field induces the molecular dipoles to undergo
pendular oscillations, which markedlytect the qubit states and the dipole-dipole interaction. We evaluate
entanglement of the pendular qubit states for two linear dipoles, characterized by pairwise concurrence, as
a function of the molecular dipole moment and rotational constant, strengths of the external field and the
dipole-dipole coupling, and ambient temperature. We also evaluate a key frequency@shiftpduced by
the dipole-dipole interaction. Under conditions envisioned for the proposed quantum computers, both the
concurrence andw become very small for the ground eigenstate. In principle, such weak entanglement
can be sfficient for operation of logic gates, provided the resolution is high enough to detestthhift
unambiguously. In practice, however, for many candidate polar molecules it appears a challenging task to
attain adequate resolution. Simple approximate formulas fitted to our numerical results are provided from

which the concurrence angw shift can be obtained in terms of unitless reduced variables.
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. INTRODUCTION

Since the original proposal by DeMiIIQ[l], arrays of ultracokd1 mK) polar molecules have
come to be considered among the most promising platforms to implement a quantum coHputer [2—
]. His proposal describes a complete scheme for quantum computing using as qubits the dipole
moments of diatomic molecules, trapped in a one-dimensional optical lattice, partially oriented
in an external electric field, and coupled by the dipole-dipole interaction. The qubit states are
individually addressable because the field has an appreciable gradient so thé&&tark éiferent
for each location in the array.

A subsequent proposal has advocated coupling polar molecules into a quantum circuit using
superconducting wires [14]. Such capacitive, electrodynamic coupling to transmission line res-
onators is analogous to coupling to Rydberg atoms and Cooper pair gﬁ@ [15, 16]. The molecular
gubits are entangled via the coupling to the transmission lines rather than direct dipole-dipole in-
teractions. Again, addressability of the qubits is achieved via the Stéaét &y means of local
gating of an electrostatic field.

Entanglement is a major ingredient in most quantum computation algorithms. It is among the
defining features of quantum mechanics, with no classical arJ;L 17-19]. A pure state of a pair
of quantum systems is said to be entangled if its wavefunction cannot be factored into a product
of wavefunctions of the individual partners. For example, the singlet state of tW(% gparticles,

\/ii(| 11y —=111)) is entangled. A mixed state is entangled if it cannot be represented as a mixture
of factorizable pure states. The allure of quantum information processing has recently motivated
rﬂgg ﬂZO—BZ]. These include

one-dimensional arrays of localized spins, coupled through exchange interactions and subject to

studies of entanglement for a variety of potential qubit sysQ

an external magnetic field [23] and analogous treatments of trapped electric dipoles coupled by
dipole-dipole interactions [32].

However, the previous studies of entanglement of electric dipoles have not adequately consid-
ered how the external electric field, integral to current designs for quantum computers using polar
molecules, fiects both the qubit states and the dipole-dipole interaction. For the simplest case of a

1y, diatomic molecule, the qubit eigenstates resulting from the Steekteare linear combinations



of spherical harmonics, with céients that depend markedly on the field strength. These are ap-
propriately termegbendular states El3], or field-dressed staQ [34]. In such states, the orientation
of the dipole moment has a broad angular range (not solely along or opposed to the field direction
as are spins in a magnetic field). Likewise, the dipole-dipole interaction for molecules in pendular
states is much élierent than that for dipoles in the absence of an external field.

Here we evaluate entanglement, as measured by pairwise concurrence, for the prototype case
of two diatomic polar molecules in pendular states, ultracold and trapped in distinct optical lattice
sites. The molecules are represented as identical rigid dipoles, undergoing angular oscillations,
a fixed distance apart and subject either toféedent or to the same external electric field. We
examine the dependence of the concurrence on three dimensionless variables. The first governs
the energy and intrinsic angular shape of the qubits (when the dipole-dipole interaction is switched
off). It is u€/B, the ratio of the Stark energy (magnitude of permanent dipole moment times
electric field strength) to the rotational constant (proportional to inverse of molecular moment of
inertia). The second variable governs the magnitude of the dipole-dipole coupling/Bjsvith
Q = (u?/r3), the square of the permanent dipole moment divided by the cube of the separation
distance. The third variabldgT/B, is the ratio of thermal energy (Boltzmann constant times
Kelvin temperature) to the rotational constant.

We also examine an aspect related to but distinct from entanglement. The operation of a quan-
tum gategls] such as CNOT requires that manipulation of one qubit (target) depends on the state
of another qubit (control). This is characterized by the shié, in the frequency for transition
between the target qubit states when the control qubit state is changed. Thewshittich is due
to the dipole-dipole interaction, must be keytaller than the diferences required to distinguish
among addresses of qubit sites. Under conditions envisaged in the proposed J;Lg [1-5, 13] for
quantum computing with trapped polar molecul@gB < 104, and for the ground eigenstate both
the entanglement and frequency shié become very small. For CNOT and other operations, en-
tanglement needs to be large, but can be induced dynamically, so need not be appreciable in the
ground eigenstate. Yet a smalb shift can only sfice if the resolution is high enough to detect
the shift unambiguously. From estimates of the line widths of transitions between the pendular

qubit states, we find it an open question whether adequate resolution can be obtained for typical



candidate diatomic molecules.

[I. ENTANGLEMENT FOR TWO DIPOLESIN PENDULAR STATES
A. Hamiltonian termsand pendular qubit states

The Hamiltonian for a single trapped linear polar molecule in an external electric field is

2

H = 2+ Viap(r) + B —pu - € (1)

where the molecule, with mass, rotational constanB and body-fixed dipole moment, has
translational kinetic energg?/2m, potential energy s, Within the trapping field, and rotational
energyBJ? as well as interaction energy€ with the external fieldE. In the trapping well, at
ultracold temperatures, the translational motion of the molecule is quite modest and very nearly
harmonic;p?/2m+ Vi 4p(r) thus is nearly constant and can be omitted from the Hamiltonian. There

remains the rotational kinetic energy and Stark interaction,
Hs = BJ? — u€cod (2)

which represent a spherical pendulum witthe polar angle between the molecular axis and the
field direction. Figuré&ll(a) displays the lowest few pendular eigenenergies [36} fodiatomic

(or linear) molecule, as functions g€/B. These are labeled with the familiar guantum numbers

J, M that specify the field-free rotational states. Howewvkmears a tilde to indicate it is no
longer a good quantum number since the Stark interaction mixes the rotational states, whereas M
(denoting the projection of th&vector on the field direction) remains good as long as azimuthal
symmetry abou€ is maintained. As proposed by DeMille, the qubit stad@snd|1) are chosen

as the lowest M= 0 pendular states, with = 0 and 1, respectively. These are superpositions of

Y, o spherical harmonics,
0= aYiel.¢). 11 =) bY0(6.¢) 3)
j i

Figure[2 plots the cdicients as functions qi€/B. Figure[3 displays the angular distributions

of the pendular qubit states. HO the distribution is unimodal and a£/B increases the dipole
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orientation increasingly favors the direction of tBefield (até = 0°). For |1) the distribution
is bimodal because, with M 0, the dipole is rotating perpendicular to thevector, which is
perpendicular to the field direction. F&r= 0, the dipole orientation is equally probable in the
hemispheres toward (< 90°) or opposite{ > 9(°) to the field direction. A%E/B increases, the
pinwheeling dipole favors the opposite hemisphere because there its motion is slowed because the
Stark interaction becomes unfavorable. However, wiiB becomes large enough, pinwheeling
is inhibited and converted into pendular libration about the field direction, so the dipole orientation
shifts to favor the toward hemisphere.

Adding a second trapped polar molecule, identical to the first but distanapart, introduces
in addition to its pendular term the dipole-dipole coupling interaction,

:H1'ﬂ2—3(111'n)(ﬂz'n)

Vi—d
Iry—ry®

(4)

Heren denotes a unit vector alomg,. In the presence of an external field, it becomes appropriate
to expresd/y_q in terms of angles related to the field direction. As shown in Appendix A, the result

after averaging over azimuthal angles (that foeN states are uniformly distributed) reduces to
Vi_g = Q(1 - 3coga)coF,co, (5)

whereQ = u?/r3,, the angler is between the;, vector and the field direction and polar angles
andé, are between thg, andu, dipoles and the field direction. Until later (Sec. 1V), we consider

the external field magnitude and direction to be the same at the sites of both the polar molecules.

B. Entanglement measured by pairwise concurrence

We will deal with the entanglement of formatiof§(o), which characterizes the amount of
entanglement needed in order to prepare a state described by a densitygnéittegceforth, we
term€(p) just "entanglement”, for short.) Wootte Q 38] has shown @ita} for a general state
of two qubits can be quantified by the pairwismmcurrence, C(p), which ranges between zero and

unity. The relation can be written as

€(p) = £(Clp)) (6)



whereé is given by

V1-C2
1+21C) 7)

) = h(

with h(x) = —xlog,x— (1 - x)log,(1 - x). The function¢(C) increases monotonically between zero

and unity a<C varies from 0 to unity. The concurrence is given by

Clp) = max {0, V1 — V2 — Vs — VAu (8)

where thel;’s are the eigenvalues, in decreasing order, of the non-Hermitian rpatrixhereo’is

the density matrix of the spin-flipped state, defined as

p= (O'y ® O'y)p*(o'y ® O'y) 9)

with p* the complex conjugate @f andoy a Pauli matrix. The parent density matgixs taken
in the basis formed by combining the pendular qubit states; for a pair of two-level particles, this
comprises the four state vectdf@0), |01), |10, |11)}.

In order to evaluate thermal entanglement, we need a temperature dependent density matrix,

o = exppH)/Z(T), with 8 = 1/kgT andZ(T) the partition function
Z(T) = trlexppH)] = ) gie”® (10)
i
with E; thei" eigenvalue and; its degeneracy. Hence the density matrix can be written as
1 N
S —BEi (. !
p(M =3 Z &5 %) (| (11)

where|¥;) is thei" eigenfunction. From the density matriXT), we can obtain the reduced

density matrix for any pair of dipoles and thence evaluate the concurrence at any temperature.

I11. CONCURRENCE OF TWO DIPOLESIN PENDULAR STATES

We illustrate the calculation of pairwise concurrenceNot 2 dipoles. The Hamiltoniarbls;

+ Hsy + Vg_q, When set up in a basis of the qubit pendular stdt@86), |01),|10), |11)}, takes the



form,

Wo+W, 0 0 0
0 Wo+W, 0 0

H31+H52: (12)
0 0 W,+W, 0
0 0 0 W +W,

CoC, CoC, CxCh CxCi
CoCL CoC, CxCl CxC!
Vg = Q(L-3coa)| % O T (13)
CxC; CxC, CiC, CiC

CxC} CxC, C,C} C,C]

whereW, andW; are the eigenenergies of the pendular qubit si@jesnd|1), in the absence of

the dipole-dipole interaction. Primes attached to quantities for the second dipole indicate that the
external field magnitude mayfter at its site (although, as noted above, we postpone evaluating
that case until Sec. V). IVWg_q the basis qubit states are linked by matrix elements containing

factors arising from the orientation cosines in Hq. (5); these are
Co = (0lcog)|0); Cx =<(0|co9|l); C;=(1jcod|1) (14)

Co andC; are the expectation values of éas the pendular statg®) and|1), respectively, so
represent for those states thiéeetive dipole moment projections displayed in Hig.1(B) cor-
responds to an exchange interaction or transition dipole moment between the qubit states. Both
the Stark eigenenergi&%; and the dipole-dipole elemen@ are functions oft€/B. As seen in
Fig[d(b), asu€/B is increasedC, becomes increasingly positive, wheré&asis increasingly neg-
ative until abou€/B = 2, then climbs to zero at abou€/B = 4.9 and thereafter is increasingly
positive. The rangg€/B = 2 to 4 is recommended for the proposed quantum computer designs
,m]; within that range, the fference in the fective dipole moments of the qubit€, — C4],
varies only modestly.
If the dipole-dipole interaction is omitted(= 0), the eigenvectors dfls; + Hs, are simply
¥, = |00), ¥, = 27Y2(|110) — |01)), ¥5 = 27Y2(|110) + |01)), ¥4 = |11), corresponding to the
eigenenergies of Eq.(12). F4df, and¥,4, which are obviously nonentangled states, the concur-

rence is zero. Fo¥, andW¥s, which exemplify fully entangled states, the concurrence is unity;
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these are termed Bell statQ[l?].

When the dipole-dipole coupling is included, an analytical solution to obtain eigenstates is only
feasible when the external field is switcheftl. AAs shown in Appendix B, in that limit analytical
results can be obtained for each step in evaluating the concurrence, both for the four individual
eigenstates and their combination in the thermal concurrence. As seen in Figu&/Bot 0, the
energy terms in Eq.(12) involve merélyy = 0 andW,; = 2B. In theVy_4 matrix of Eq.(13), the
cosine matrix element8, andC; vanish andCx = 37%2; thus, the only nonzero elements occur
along the antidiagonal and (far= 90°) are justQC%. The results for this zero-field limit prove
useful in interpreting those for the general pendular case.

The limits withQ = 0 andor u€/B = 0 motivate setting up the Hamiltonian of Eqgs.(12) and

(13), for the (unprimed) case with the same external field at both dipole sites, using a basis of Bell

states:
[11) +100) |11)-|00y |10) +(01) |10) —|01)

, ; ; ; (15)
V2 V2 V2 V2
In this basis, the Hamiltonian becomes
W, W. 0 O
W.W, 0 O
HS]_ + Hsz = (16)
O OwW O
0O 0 0O W,
A . BC, o
BAC O
Viga=Q@1-3code)| (17)
C.,C_D, O
0 0 0D

WhereW, = W;xW, andA, = (C2+C2)=C2, B = $(C2-C2), C. = Cx(C1+Co), D, = C,CoC2.
This makes explicit a consequence of the symmetry between the (unprimeﬂites [39]. In the Bell
basis, the Hamiltonian factors, with the stat&%|10)—|01)) in a 1x 1 block, so that state remains
maximally entangled regardless of the valug:8fB or Q/B.

Figurel4 plots, fou€/B = 0, 2 and 4.9, the eigenenergy and pairwise concurrence vayfis

= 0 to 6 for the four eigenstates of the two-dipole system. The eigenstates are numbered from
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1 to 4 in order of increasing energy. Fp€/B = 0O, both eigenstates 2 and 3 are Bell states,
with eigenenergieg;/B = 2 — (Q/6B) and 2+ (Q/6B), respectively; eigenstates 1 and 4 are
also entangled (much more weakly) by the dipole-dipole interaction, with eigenenenergies that
shift downwards and upwards nonlinearly with increadiy@, respectively. Fou€/B > 0, the
concurrences increase wily B for eigenstates 1 and 4, and decrease for eigenstate 3. By virtue of
the symmetry imposed factorization noted above, eigenstate 2 retains the same Bell form despite
the Stark and dipole-dipole interactions whicteat its energy, and its concurrence is always unity.
For smallQQ/B << 1, eigenstate 3 also becomes independent of the dipole-dipole interaction
and coincides with eigenstate 2 in both energy and concurrenceud/Br= 4.9, as seen in
Fig. I(b), theC; = (1jco9¥)|1) factor that appears in seven of the matrix elements in Eq. (13)
vanishes. Consequently, the energy of eigenstate 4 then becomes independent of the dipole-dipole
interaction, although its wavefunction and concurrence do not.
Figure[® shows, fou€/B = 0 and 2, how the contributions of the basis states to each of the

eigenstates vary with the strength of the dipole-dipole interaction. This illustrates tiggtBor <
1 the eigenstates rapidly approach those(o+ 0. Indeed, we find that fo€2/B < 0.04 the
concurrences for eigenstates 1 and 4, which rapidly become the same, are proportiefial to
within better than 1%. Thus,

C12 = K(X)[Q/B] (18)
where the proportionality factd€(x) is a function ofx = u€/B. At the zero-field limitK(0) = 1/6.
In Appendix C we describe a numerical analysis that provided an accurate approximate formula,

Ao
1+ exp[(X - Xo)/aX]

K(xX) = A + (19)

This is plotted in Fig.6 and values of the four parameters are listed in Appendix C.

FigurelT displays fof2/B = 0.1, 1 and 6 the eigenenergies and concurrences vegsBgrom
0 to 8 for the four eigenstates. As the dipole-dipole interaction increases 60-fold over this range, its
effect on the eigenstate energies is relatively modest, whereas the concurrences change markedly,
in response to variations in eigenvector compositions such as illustrated [ Fig. 5.

Figure[8 gives a contour plot of the thermal pairwise concurrence derived from Eq.(11) as a

function of Q/B and kgT/B. It pertains tou€/B = 3; we found that normalizing the thermal

9



concurrence to its value for ¥ 0 andQ2/B = 1 removed most of the variation wiji€/B from

such contour plots. For ¥ 0, the thermal concurrence coincides with that for the ground state,
eigenstatel;. However, akgT/B increases, the thermal concurrence decreases and is always
smaller than the ground-state concurrence. This may seem odd, because Eq.(11) specifies a shiftin
population that reduces the contribution from the gound state, while bringing in contributions from
the excited states. The eigenstates 2 and 3 then populated have large concurrence, so increasing
temperature might be expected to make the net thermal concurrence become larger than for the
ground-state, rather than smaller. The source of this behavior is indicated by the analytic solution

obtained in Appendix B for the zero-field limit,
C12(T) = C12(2)P1 — C12(2)P2 — C12(3)P3 — C12(4)Py (20)

whereP; = (1/Z2)expE;/kgT) with Z(T) = X, expE;/kgT). This shows that the excited states
indeed reduce the thermal concurrence, fiece traceable to Eq.(8) and which persists even for
largeu€/B.

Another striking aspect of Fig. 8 is that the concurrence vanishes along and outside a particular
contour. That contour defines mutually dependent maximum valug3 ¢B and minimum values
of Q/B required to obtain nonzero concurrence. WhgB << 1, we find that a modified form of

Eq.(I8) represents the thermal concurrence,

C12(T) = max0, K[y - Yo(x. 2)]} (21)

Herex = u€/B; y = Q/B; andz = kgT/B is the scaled temperature. Fid. 9 gives a contour plot
of yo = Q/B, the critical dipole-dipole coupling required for nonzero concurrence. Some further
details are included in Appendix B.

The original proposal by DeMille and kindred papers on quantum computing with trapped polar
moleculesﬁlﬂﬂﬂ ﬂ& 16] discuss for several examples the range of experimental conditions
deemed suitable and acceptable. For trap temperatures of the order of a microkelvin or below,
the typical values oksT/B are a few times 10, so indicate that only ground-state entanglement
would be significant. The external field strengths considered are typically &\f¢em. The

spacing between optical lattice sitesz 1/2, is half the optical lattice wavelength. The optimal
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choice ofA ranges between 1 to 0.3 microns, depending on electronic transition frequencies of
the molecules to be trapped [13]. From these parameters and molecular data, vaBsaoé

small; we find for a dozen potential candidate molecules values ranging betweao4 (for

KCs) to 2x 1074 (for Csl). A favorite candidate is SrQi (= 8.9D, B = 0.33cm™%, A = 1 micron),

for whichQ/B ~ 107°. In that regime, the concurrence is simply proportionald, so can be
easily evaluated from EQ.(IL8) afod (21) without use of the rather elaborate prescription outlined

in Egs.(6-14).

IV. FREQUENCY SHIFT FOR TWO COUPLED DIPOLESIN PENDULAR STATES

In the regionQ2/B < 1074, the concurrence of the ground eigenstate is very small, typically
< 107°. However, such meager entanglement in eigenstates can still be adequate for quantum
computing, as demonstrated with NMR versions of quantum comprs [40]. The key aspectis that
although entanglement needs to be large for some quantum computing algorithms, it need not be
appreciable or even present in the ground eigenstate of the system; it can be induced dynamically
during operation of the comput@ﬂ]. Here, for the polar molecule case, we consider this aspect.
We also evaluate an eigenstate property, a small frequency shift, distinct from but related to the
pairwise concurrence, that is important for quantum computing.

The need for selective excitation in operation of quantum logic 9%42, 43] is an essential
feature. Taking the 2-qubit CNOT gate as an example, its operation requires that manipulation of
one qubit (target) is perceptivelytacted by the state of the other qubit (control). In our case, the
gubits are pendular states that can be accessed by microwave transitions, fidribigh spectral
resolution. As resolution has a crucial role, we now suppose the external fikddsdinough at
the two dipole sites (denoted unprimed and primed) to supply distinct addresses for thef.sites (
Fig. 1(a), green dashed curve).

SinceQ/B is so small, we first omit the dipole-dipole interaction and, as illustrated ir Elg. 10,
consider transitions among the pendular eigenstates of Eq.(12). Although in this limit the ground-
state concurrence is zero, as seen in[Ed.(18), it is possible to generate states of large concurrence

by use of resonant pulsQ 44]. Start by applying a pulse resonant with the transition denoted
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w1, betweerj00) and|01), which has energyV; —W;. Note thaiw, needs to be well-resolved from
the transitionws, betweern00) and|10), which has energW; — W,. The separation thus comes
from the diferent values of the external field at the two sites (plus a dipole-dipole contribution,
in higher order). The requisite field strengtiitdrence €’ - €, can be readily determined from
another approximation formula,

A
1+ (X/%o)?

by comparing results fox = u€/B andx’ = u’€’/B; the accurate fit obtained (better than 1% except

(W1 —Wo)/B = A + (22)

nearx = 0) is displayed in Fig[_11 and the four parameters in[Eg.(22) are given in Appendix C.
The amplitude and duration of th@ pulse can be adjusted to make it/& pulse, which will put
the system in the state ??(]00) + |01)).

Next, to complete the CNOT gate, apply a pulse resonant with the transigibetween01)
and|11). This needs to be well-resolved from transitiog between00) and|10). However, in
our initial approximation, bothy, andws have the same transition ener@iy, — W,. Hence, weak
as it is, the dipole-dipole interaction is seen to have an essential role: to introduce a frequency
shift, Aw = w3 — w,, adequate for unambiguous resolution. If that is fulfilled, the amplitude and
duration of thew, pulse can be adjusted to make it pulse. Thereby the system will be put in
the state 2Y/2(J00) + |11)). This result of a CNOT gate is to first approximation a Bell state (aside
from small corrections of ordeR/B), so its concurrence will be near unity. It is not an eigenstate,
so will evolve with time but in principle would remain nearly fully entangled until degraded by
other interactions.

If now the dipole-dipole terms from Eq.(13) are included to first order, we obtain

w1 = (01H|01) — (00H|00) = W; — W) + Q,Co(C} — Cp) (23a)
w, = (11H|11) — (0AH|01) = Wy — Wy + Q,C}(Cy — Co) (23b)
wsz = (10H[10) — (00H|00) = W; — Wy + Q,C4(Cy — Co) (23c)
wy = (11H|11) - (10H|10) = W, — W} + Q,C4(C; - C}) (23d)

whereQ, = Q(1 - 3coga). Thus, the key frequency shift is given by
AW = W3 — W2 = W4 — W1 = QQ(C]_ - Co)(Ci - Cé) (24)

12



For givenQ,, the frequency shifaw depends only o andx’, which determine at the respective
sites the dierence in thefective dipole moment projectioi® andC, along the external electric

field, specified in Eq.(14). To provide a convenient means to evaluate Egs.(23) and (24) we again
fitted our numerical results to obtain accurate approximation formulas,
P

1+ (X/%0)P

+ A1 + i
1+exp[(X—X)/ax] 1+ exp[—(X— X2)/aX%]

Co(X) = As + (25)

Ci(¥) = Ao (26)

These functions are plotted in Fig.111, together v@th- C,, and the fitted parameters are given
in Appendix C.

Since for small2/B, both the concurrence andv are proportional t&2/B, the frequency shift
provides an equivalent measure of entanglement. Whe@-fletds difer at the two sites, Eq.(18)
still provides a very accurate approximation €@w(x, X'), merely by replacing the proportionality
factor by the geometric meark(X)K(x')]*/?. The concurrence (which involv&, the exchange
interaction term) is in principle éfierent fromaw but both have about the same magnitude. The
frequency shift is much more relevant for quantum computing, because directly involved in
the CNOT gate.

Also important, in addition to the pulse shapes whifiee the population transfers, are the
durations of the resonant pulses required to resolvandw, from ws; these must satisfys; >>
1/lws — w1| andrs, >> 1/|ws — wy|. For 3, the lower bound usually can be made very low,
permitting a short pulse duration. This holds becar@as well as dipole-dipole terms contribute
to |wsz — w1/, which thus can be made large by choice of&hfeld gradient, regardless of whether
Q, is extremely small. In contrast, fai, the separationw = |w3 — w,| depends only on the
dipole-dipole interaction. The smallew is, the longer thev, pulse duration has to be in order
to complete the CNOT operation. Although largep allows a shorter pulse durationgw must
not be so large that it becomes comparable to or larger than the addressing shift produ€ed by

thereby thwarting correct identification of the qubits.

13



TABLE I lllustrative CNOT Gate Implementatién

uE/B x=1 X =101 X =110 x=3 X =303 x =330
(W1 —Wp)/B 2.2709 2.2759 2.3218 3.5614 3.5831 3.7789
Co 0.30165 0.30404 0.32487 0.57922 0.58149 0.60051
C1 -0.16467 -0.16573 -0.17461 -0.16362 -0.16150 -0.14115
Co-C 0.46632 0.46977 0.49948 0.74284 0.74298 0.74165
(w1 —w3)/B 4.99E-3 5.09E-2 2.17E-2 2.17E-1
Aw/B 2.19E-6 2.33E-6 5.52E-6 5.51E-6
Ci2 1.20E-6 1.17E-6 3.57E-7 3.34E-7

For Q,/B = 107°; x = u€/B, x = u€’/B. As the quantities in the lowest three rows are functions of
bothx andx’, their values are listed in the columns. There E-n denotes a factor of 10

Table | provides specific numbers pertaining to the SrO example. From Sec.lll, we jARe-
107°. As representativé-field values, we us& = 1 and 3 for site 1 and and takehigher by 1%
or 10% for site 2. From EQs.(23), the transition frequenaies w4 andw, = w3 (in units of B)
to 5 or 6 significant figures. The frequencytdrence that must be resolvable for the first step of
the CNOT operationy; — ws, is approximately jushaAW = (W] — Wp) — (Wy — Wp). From Fig.
[11, this is seen to grow about linearly with botAndx’ — x. The values in Table | (third row from
bottom) range from> 1073 to > 107 (in units of B). To accommodate more dipole qubits, it may
be desired to make much smaller tBdield differences between sites; steps with = 0.01%
were proposed by DeMiIIﬂ[l]. That might encounter engineering limitations, but in principle
the proportionally smallew; — w3 difference could still be readily resolved. For the second step
of the CONT operation the crucial frequency shifty = w; — w3 varies only modestly wittx
and practically not at all withk — x. The values ofrw/B in Table | (second row from bottom)
range between 2 and»610°%; in frequency units, this range is 20 to 60 kHz. Smaller still are
the corresponding values of the concurrence (bottom row); also insensitve tobut, in accord
with Fig. 6, varying more rapidly witkx.

Figure 12 exhibits for both thew shift and concurrence the variation withthe angle between
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the direction of the electric field and the axis between theldg This dependence enters via the
factor (1- 3coga) in the dipole-dipole interaction, Eq.(5), which emerges directly invtheshift,
Eq.(24), and by a more complex route propagates into the concurrence, via Eq.(13). Tilting the
field direction to maker = 54.73°, the "magic angle”, provides a simple means to shiitlwe

entanglement. That is a useful option, awkward to attain in other \ua [7,13].

V. CONCLUSIONSAND PROSPECTS

In this study, our chief aim has been to examine entanglement of polar molecules by the dipole-
dipole interaction and subject to an external electric field, for the prototype case of two diatomic
or linear* 3 molecules. This required use of qubits that are pendular states comprised of sums of
spherical harmonics. We focused on the pairwise concurrence and its dependence on three unitless
reduced variables, involving the dipole moments, field strength, rotational constant, dipole-dipole
coupling and temperature. We have considered a wide range of the parameters, to map general
features of the concurrence. However, for conditions envisioned for proposed quantum computers,
the dipole-dipole coupling is weal(B typically of order 16* to 10°) and the concurrence
becomes very smalk( 10-°). For that weak coupling realm, we found the frequency shift
provides an equivalent measure of entanglement, directly related to observable properties and
hence preferable to the concurrence. We also obtained for botkuitehift and concurrence in
the weak realm simple explicit formulas in terms of the reduced variables.

For guantum computing a crucial issue is whetheiis large enough to enable thg transition
to be reliably distinguished from; (and, equivalentlyw, from w,4). For typical candidate polar
molecules, this requires resolving transitions separated by only tens of kHz. That would not be
feasible in conventional molecular spectroscopy. Under ordinary gas phase conditions, transitions
between molecular rotational or pendular states have line widths of the order of a few 100 kHz

]. For ultracold molecules trapped in an optical lattice, line widths may be much narrower.
Collisional broadening is eliminated and at microkelvin temperatures Doppler broadening is also
guenched (as trap conditions are in the Lamb-Dicke regime). It is encouraging that for ultracold

atoms extremely narrow line widths have been attained by exploiting "magic” optical trapping
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conditions that are expected to be at least in part applictalmtmlecules@G]. At present, however,

no data have been reported on line widths for rotational transitions of ultracold molecules trapped
in an optical lattice and subject to an external electric field. In view of the small sizepit

is important to obtain such data to assess the resolution attainable, since motion within the traps,
coupling to lattice fields, and inhomogeneity of the external field may introduce appreciable line
broadening.

We have sought to glean pertinent evidence from electric resonance spectroscopy of molecular
beams, as the beams are collision free and transitions are observed in an external electric field
("Rabi C-field”). For BaO, botmM = 0, J = 0 — 1 transitions in the microwave regiﬂﬂ] and
AJ = 0,|M| = 0 — 1 transitions in the radiofrequency regi[48] have been observed, in fields
ranging from~ 200- 500 V/cm. For the radiofrequency transitions, line widths were only about
2 kHz, consistent with just the dwell time in the C-field. But for the microwave transitions the
widths are much larger, 45 kHz; this is attributed both to the higher frequency of the transitions
and to experimental conditions that render more significant Doppler broadening and nonunifor-
mity of the field, especially in the entrance and exit fringe regi [49]. The Doppler and dwell
time contributions are not relevant to inferring what might be expected for trapped BaO (or SrO).
Broadening by inhomogeneity of the external field is relevant but depends very much on experi-
mental particulars. The transitions of interest, depicted in[Eig. 10, occur in the microwave region
and involve Stark fields typically ten-fold larger than used in the electric resonance spectroscopy,
so the line widths might be significantly broadened due to field inhomogeneity. These observations
do not permit firm conclusions about the resolution issue, but it decidedly poses an experimental
challenge.

This discussion pertains only to the choice of qubits we have considered, pendular states of
linear polar molecules, which involve transitions that chaddrit notM. The resolution issue
motivates examining other choices for qubits. For instance, states with theJshmalifferent
M could be used. Other options, particularly use of hyperfine or nuclear sin states instead of

rogl, 2,13, 16]. As

yet, the size ohw for any qubit choice other than that used in this paper remains to be determined.

pendular states, have been suggested as means to reduce sources of decuﬂ

We intend to extend the treatment developed here to other choices for qubit basis states as
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well as to larger numberd > 2 of dipoles. In preliminary work on linear and planar arrays of
dipoles up toN = 8, we find, as expected, the maximum pairwise concurrence occurs for next-
neighbor dipoles, although that for non-nearest ones is significant. Also in prospect is an analogous
treatment of the proposed coupling of polar molecules via microwave strips [16]. There the
entangling interaction éers from direct dipole-dipole interactions, but again the proposed qubits
are pendular states.

Another pendular variant inviting attention is use of polar symmetric top molecules|O¥he
and|1l) qubits can be selected gkK, M) = |1,1, -1) and|1, 1, +1), which are degenerate in the
field-free limit and thus have a first-order Starfkeet [45]. Even in a weak electric field, these
states are strongly oriented along and opposed to the field, with equal and opposite projections.
Moreover, the ffective dipole moments do not depend on the field strength so low fields can be
used if necessary to reduce line broadening, without the penalty imposed by quencliiagtofe
dipoles that would occur for the second-order Stdf&at. At first blush, the symmetric top option
appears to be disallowed because transitions betweeM thel and+1 Stark states violate the
selection rulespnM = 0 or AM = +1. But the prohibition is not absolute. Because the optical
lattice perturbs cylindrical symmetry about the field,is not strictly a "good” quantum number,
so theaM selection rule is relaxed. Moreover, if the molecule contains an atom with nuclear spin
| > 1/2, and hence an electric quadrupole moment, transitionsmith= +2 become allowed.

For instance, a deuterium nucleids 1) makesaM = +2 transitions facile in Stark spectQSO].
Other symmetric top options for qubits are inversion doublets (e.g. ig) MHinternal rotation
states associated with hindered torsional motion (e.gCF%); these der strong dipole-allowed
transitions.

Previous studies of entanglement, both for polar molecﬂegl 32] and for magnetic spins
[Q@Ell] have considered primarily domains where the concurrence isafge){ and have
focused on means to tune the entanglement to attain such domains. For polar molecules, that
requiresQ2/B > 1. Recently, it was suggested that such lay® could be attained for dipole
arrays by exploiting nanotraps with lattice spacing of the order of only 10 [32]. However,
as emphasized in Sec. 1V, for quantum computing large entanglement in the ground eigenstate

is not required. Indeed, reducing the array spacing so markedly would strongly foster inelastic,
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spontaneous Raman scattering of lattice photons and hed\ueeirdecoherencg M m 13]. Such
considerations make small rather than lafy@, and consequently weak rather than strong en-
tanglement in the ground eigenstate, actually preferable for quantum com[lﬂing [37], provided

resolution of theaw shift can be attained.
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APPENDIX A: DIPOLE-DIPOLE INTERACTION

The angular dependence of the dipole-dipole interaction, given iblEq.(4), is usually expressed
as

®;; = coP — 3c0%iCOYy; (A1)

whereg is the angle between dipoles andu;; anglesy; andvy; specify the orientation of the
dipoles with respect to the vector; between them. Ordinarily, it is natural (and done in all
textbooks) to express g@@ terms of the angleg together with the azimuthal anglésabout the

rij axis. Thus, use

CO$3 = COSY;COSy; + SiNy;Siny;CoSEr — ¢r|) (A2)

which when combined with the -3cgsosy; term gives the familiar expressitjﬂSl}. In the pres-
ence of the external electric field, we need to redgsin terms of angles; andg; that specify the

orientation of the dipoles with respect to the direction of the external electric field. Therefore, we
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use

COSB3 = COF,coY); + SiNnY;SinY;CoS@ei — dej) (A3)
COSy = COF,COSY + SING;SINkCOSPEi — Pg;) (A4)

where thegpe are azimuthal angles about the field vediband« is the angle between the field

vector and the;; vector. The azimuthal factors can be expressed as

COS(ei — ¢gj) = COSPECOSPej + SiNpg;SINPg; (A5)

As M = 0 states, which do not depend on thangles, are chosen as the qubit basis states, in
evaluating matrix elements df;; between these states the integrations oygalg; (from O to 2r)

eliminate all terms involving theée angles. The net result is simply
(@i))y = (L - 3coda)cowcod, (AB)

The dfect of integrating over the angles is just to replace My, the dipole moments; andy; by

their dfective valuesy(co9). The dtective dipole-dipole interaction hence reduces to
Vi g = Q(1 - 3coda){cod; ){coF;) (A7)

with Q = ,ui,u,-/rﬁ as a convenient scale factor.

APPENDIX B: ZERO-FIELD CASE

Foru€/B = 0, the Hamiltonian matrix reduces to diagonal terms from Eq.(12) and antidiagonal
elements from Eq.(13), and the pendular qubit basis states become Emplyy and|1) = Yio.
The form of the Hamiltonian makes it equivalent to that for the Ising model for a system with two
qubits @]. Diagonalization of the Hamiltonian yields the eigenenergies and eigenvectors given

in Table 1l as explicit functions of2/B.
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TABLE II: Zero-Field limit for N = 2 dipoles.

i Eigenenergiesk;/B Wavefunction,; Cio
_ 2\1/2 1 _ 20,
1 2-201+¢) 7= (1D - a:100) o2
1
2 2(1-9) @(|10> - |0D) 1
1
3 21+ ) ﬁ(|1o> +101)) 1
2\1/2 1 _ 2a-|
4 2+2(1+79) W(ul) a_|00)) Tr?

wherea, = [1 £ (1+¢%)" 2] JZ, with £ = Q/6B

The density matrix for eigenstate 1, the ground-state, is

@ 00 -a,

0O 00 O

p(1) = [P (1l = (B1)
1+ef| 0 00 O
-, 00 1
That for eigenstate 2 is
00 OO
110 1 -10
p(2) = [¥2)(Wal = +§ (B2)
0-110
00 OO

The p(3) matrix difers fromp(2) by having+1 in place of each-1; thep(4) matrix difers from
(1) by havinga_ in place ofa, . As these density matrices pertain to only two dipoles, they need
not be reduced further.

Obtaining the density matriceg(i), for the spin-flipped states, defined in E@l (9), involves
shufling the rows and columns @fi) in accord with|00) « |11) and|01) « |10). This gives

1 00 -a,

N 1 0 00 O
MD=1 5 (B3)

tTayl 0 00 O

—a, 00 @2

+
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and thus the product matrix is

222 00 -a®

) 1 0 00 O
pp(1) = ——— (B4)

(1+e?)’| 0 00 O

—2a, 0 0 202

The eigenvalues of this matrix arg = 4a§/(1+ ai)z, A = A3 = 14 = 0. From Eq. [B), the
concurrence iC1,(1) = 2a, /(1+a?). Similarly, we find the concurrences for the other eigenstates,

given in Table I.

To evaluate the thermal concurrence, we need to set up the thermal density matrix

a00g

4 ObdoO
p(T) = > exp(-Ei/keT) [¥i)(¥i| = (B5)

i=1 0dbo

g0O0c

where
a? a?
= PL+ ——P B6
T TraZ VT Tra ! (B6)
b= %(Pz + P3) (B?)
1 1
= P P B8
v T 1rar (B8)
1
d= §(P3 - P) (B9)
a, a_
=~ Py - P B10
9 e Y 1ra? (810)
with
p - exp(Ei/ksT) (B11)
Z
Then we find
ac+g> O 0 2ag
i 0 +d 2bd O

p(T)p(T) = (B12)

0 2bd b?+d?> O

2cg 0 0 ac+¢?
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and obtain the eigenvalues,
A= (Vac-gy, Ap=(b-d? 3=(b+d? 1= (Vac+g) (B13)
Hence from Eq.[(8), we obtain the thermal concurrence,
C12(T) = max{0,-2(b + 9)} (B14)
With the Cy,(i) of Table I, this gives Eq.(20) of the text,
C12(T) = C12(1)P1 — C12(2)P2 — C12(3)P3 — C12(4)P4 (B15)

WhenQ/B << 1, the ground state concurrence becor@egl) — /6B, in accord with
Eq.(I8) of the text, whereaB,,(4) — Q/6B and C15(2) = Cy»(3) = 1. Provided that also
ksT/B << 1, a first-order expansion of Eq.(B15) gives

C12(T) = C12(1) — & — €3, (B16)
wheree; = P,/P; << 1; e = P3/P, << 1 andP,/P; <<< 1. Then
C12(T) = K(0)[©2/B - Q/B], (B17)
which has the form of Eq.(21) of the text wik(0) = 1/6 and
Yo(T) = Q¢/B = (e + €3)/K(0) = 12exp(—2B/kgT) cosh(©2/3kgT) (B18)

This result for the zero-field case, although not useful in practice, illustrates how the excited
states are involved in creating a temperature dependent minimum level of dipole-dipole coupling,
Q./B, that is required to have nonzero thermal concurrence.

Figure[1B shows a contour plot 6f,(T) for the zero-field case, derived from Eq.(B14). Itis
gualitatively quite similar to Fig. 8 for the pendular case, over the same wide rakgé /8 and

Q/B.

APPENDIX C: REDUCED VARIABLE FORMULAS

In order to find a proper reduced variable formula, three steps are needed: (1) calculate enough

sample points to define well the exact curve; (2) find a function with adjustable parameters that
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enables fitting those points; (3) evaluate the parametersy wsinon-linear regression method.
For our curve fitting we use the Levenberg-Marquardt Algorltm [53], also called "Chi-square

minimization”. Chi-square is defined as:
N
V=) Y- focd)f (1
i=1

wherex andY; are the independent and dependent variables faf'ttie= 1, 2,...,n) sample points

of the exact curve] are the parameters to be fitted. The Levenberg-Marquardt algorithm iteratively
adjusts the parameters to get the minimum chi-square value, which corresponds to the best fit. The
input data for fitting Eqgs.(122, 25, 26) comprised our numerical results for the pendular case,
over the rangeg = u€/B = 0 to 8. Tables Il - VI list the optimal values found for the parameters

and 95% percent confidence intervals. At 0, the Eq.(19) fit give&(0) = 0.17103, diferent

slightly from the exact zero-field limit{(0) = 1/6. Likewise, atx = 0 the Eq.(25) and (26) fits

give Cy = 0.005 andC; = 0.00072 rather than the exact value of zero. The critical poinCfatio

change sign ix = 4.902, whereas Eq.(26) giv€s = —0.00025, slightly diferent from zero.

TABLE IlI: Values of the parameters for EQ.(19).

Parameters Pendular Field-free acl
Aq 0.01092 0.00221 +0.0003
A 0.21953 0.24779 +0.006
X0 0.96578 0.74035 +0.05
AX 0.97429 0.86072 +0.03

2 95% confidence interval; values listed are maximum found for the 2 curves
shown in Fig.b. BottR? values are around 0.9981.Similarly accurate results
are found when Eq.{18) is generalized fafeient E-fields at the dipole sites
by replacingk (x) by [K(X)K(x)]/2.
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TABLE IV: Values of the parameters for EQ.(22).

Parameters Values cia
Aq 12.42379 +0.0533
Ay -10.47646 +0.0534
X0 8.77516 +0.0534
p 1.5867 +0.00527

a95% confidence intervaR% = 0.9999

TABLE V: Values of the parameters for Eqg.(25).

Parameters Values ci2
Aq 0.84855 +0.00145
Ay -0.84355 +0.00180
X0 1.6339 +0.00508
p 1.2459 +0.00539

a 95% confidence intervaR? = 0.99994

TABLE VI: Values of the parameters for EQ.(26).

Parameters Values ci2
Ao -0.75212 +0.0323
Aq 1.04192 +0.0336
Ay 1.14092 +0.0325
X1 -0.16241 +0.0224
X2 3.1232 +0.124
AXq 0.90544 +0.0136
AXo 2.76286 +0.0496

a95% confidence intervaR? = 1
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For convenience, we give formulas for the three unitlesesagvaluated with customary units:
1€/B = 0.0168u(Debye)€(kV/cm)/B(cm™);

Q/B = 5.04x 107°4?(Debye) /r3(microns)/B(cm™);

keT/B = 0.695T(K)/B(cm™2).
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FIG. 1: (Color online) Stark states for a polar diatomic maledn a'X electronic stateJEG], as functions

of u€/B, with u the permanent dipole momei&,the field strengthB the rotational constant. (a) Eigenen-
ergies, W, and (b) Matrix elements of orientation cosines; see Eq.(14). States used as qubits (red curves)
are labeled0y and|1). In the field-free limit,|0) correlates with thel = 0, M = 0 and|1) with theJ =1,

Mj; = O rotational states. Dashed curve (green) in (a) shows energy for transition between qubit states,
AW = W — Wp; that in (b) show<Cy — C4, difference betweertlective dipole moments, projections of the

molecular dipole on the field direction for pendular stasand|1).
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FIG. 2: (Color online) Cofiicients of sums of spherical harmonics for pendular st@yend|1), see Eq.(3).

Dashed curve foll) indicates the cd&cient of Yp o iS negative.
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FIG. 3: (Color online) Angular distributions of th@) and|1) pendular states for values ©€ /B between 0

and 8.
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FIG. 4. (Color online) Eigenenergies, numbered 1, 2, 3, 4 gteoof increasing energy, and pairwise
concurrences of the eigenstates for two dipoles as a function of the dipole-dipole coupling cQyiBtéot

three values of the reduced electric field streng®/B = 0, 2 and 4.9.
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FIG. 5: (Color online) Eigenvectors of the four eigenstatedwo dipoles as a function of the dipole-dipole

coupling constanf2/B = 0 to 6 foru€/B = 0 (dashed curves) and 2 (solid curves).
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FIG. 6: (Color online) Th&k(x) function of Eq.(18); solid curves show exact result (red) and fitted function
(blue) of Eq.(19) that pertains to pendular qubit basis, see Eq.(3). For comparison, dashed curve pertains to

field-free basis with0) = Yq0, |1) = Y10 (Cf. Table 1ll, Appendix C).
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FIG. 7: (Color online) Eigenenergies and concurrences tfdahr eigenstates for two dipoles as a function

of reduced variableg;E /B for electric field and2/B for dipole-dipole coupling.
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FIG. 8: (Color online) Contour plot of thermal pairwise conemce for two dipoles, for€/B = 3. For

0 < Q/B < 1, the maximum concurrendg o(max) = 0.0473, occurs at ¥ 0, Q/B = 1. The plot displays
normalized contours. Within each colored band, the variatioB;8fC;,(max) is 0.1; thus the normalized
concurrence in the right most band (red) ranges from 0.9 to 1; in the next band (orange red), from 0.8 t0 0.9,
etc. A striking feature is the large region (uncolored) where= 0. There, entanglement does not occur

unless the dipole-dipole coupling exceeds a critical value dependent on the temperature.

35



FIG. 9: (Color online) Contour plot displaying(x, z) term in Eq.(21) vsx = uE/B. Within each colored
band, the range ofy is 0.001; thus in the lowest colored band (magenaranges between 0 and 0.001;

in the highest colored band (red), is between 0.009 and 0.01.
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FIG. 10: (Color online) Schematic energy levels for qubitghdar eigenstates of N 2 dipoles, in absence

of dipole-dipole interaction, thus corresponding to Eq.(12). Qubit basis states shown at left, eigenenergies
at right. Pairs of transitions involved in CNOT operation are indicatedtransfers dipole 2 fron0) to

|1) with dipole 1 remaining ir0); then w, transfers dipole 1 fron0) to |1) with dipole 2 remaining in

|1). Analogously, the same result could be reached¥yollowed by w,4. Transition energies (including

dipole-dipole terms to first-order) are given in Egs.(23).
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FIG. 11: (Color online) Comparison of exact results (blueves) with fitted approximation functions
(dashed red curves) for properties governing transitions among qubit states, Eqgs.(23): pendular energy

difference, V1 — Wp)/B, cosine expectation valueSy andC, and their diferenceCp — Cy; cf. Eqgs. (22,

25,126).
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FIG. 12: (Color online) Frequency shifiw/B (left panels) and ground state concurre@ge (right panels)

as functions ofr, the orientation angle of the electric field. Curves are showrfB = 0.2 to 1.0 with

0 30

60
« (degrees)

90

T T T

0 30

60
a (degrees)

90

u€E/B=1or3.

0.16+

0.124

o 0.08

0.041

0.00

0 30

60
a (degrees)

90

0.05
0.04.
0.03!

o 0.02
0.01

0.00

39

0 30

60
« (degrees)

90



00 02 04 06 08 10
Q/B

FIG. 13: (Color online) Contour plot of thermal pairwise canmence for field-free case, prepared in same

format for comparison with Fig. 8 for the pendular case. HEig(max) = 0.1644 at T=0,Q/B = 1.
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